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Abstract 

Background This methodological intersection article demonstrates a method to measure cognitive load in clinical 
simulations. Researchers have hypothesized that high levels of cognitive load reduce performance and increase errors. 
This phenomenon has been studied primarily by experimental designs that measure responses to predetermined 
stimuli and self‑reports that reduce the experience to a summative value. Our goal was to develop a method to iden‑
tify clinical activities with high cognitive burden using physiologic measures.

Methods Teams of emergency medical responders were recruited from local fire departments to participate in a sce‑
nario with a shockable pediatric out‑of‑hospital cardiac arrest (POHCA) patient. The scenario was standardized with 
the patient being resuscitated after receiving high‑quality CPR and 3 defibrillations. Each team had a person in charge 
(PIC) who wore a functional near‑infrared spectroscopy (fNIRS) device that recorded changes in oxygenated and 
deoxygenated hemoglobin concentration in their prefrontal cortex (PFC), which was interpreted as cognitive activity.

We developed a data processing pipeline to remove nonneural noise (e.g., motion artifacts, heart rate, respiration, 
and blood pressure) and detect statistically significant changes in cognitive activity. Two researchers independently 
watched videos and coded clinical tasks corresponding to detected events. Disagreements were resolved through 
consensus, and results were validated by clinicians.

Results We conducted 18 simulations with 122 participants. Participants arrived in teams of 4 to 7 members, includ‑
ing one PIC. We recorded the PIC’s fNIRS signals and identified 173 events associated with increased cognitive activity. 
[Defibrillation] (N = 34); [medication] dosing (N = 33); and [rhythm checks] (N = 28) coincided most frequently with 
detected elevations in cognitive activity. [Defibrillations] had affinity with the right PFC, while [medication] dosing 
and [rhythm checks] had affinity with the left PFC.

Conclusions FNIRS is a promising tool for physiologically measuring cognitive load. We describe a novel approach to 
scan the signal for statistically significant events with no a priori assumptions of when they occur. The events corre‑
sponded to key resuscitation tasks and appeared to be specific to the type of task based on activated regions in the 
PFC. Identifying and understanding the clinical tasks that require high cognitive load can suggest targets for interven‑
tions to decrease cognitive load and errors in care.
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Background
Cognitive errors have been implicated in causing adverse 
safety events that harm patients [1]. Researchers have 
used different methods to study cognition, with the goal 
of improving safety [2]. The NASA Task Load Index [3] 
(NASA-TLX) is a prevalent method in which subjects 
rate their perceived load when performing tasks. The 
results are easy to interpret and summarize the overall 
experience. Physiological measures, like heart rate, pupil-
lary dilation, and skin conductivity, can also measure 
cognitive load as the body’s response to a task [4]. These 
methods are indirect and require more effort to interpret.

Functional near-infrared spectroscopy (fNIRS) has 
emerged as a physiological method to directly measure 
cognitive activity. An fNIRS device is worn as headgear 
with embedded light sources and detectors. The light 
sources project near-infrared light into the cranial tis-
sues, and the detectors measure changes in oxygen con-
centration based on the amount of light absorbed. Higher 
levels of oxygen correspond to higher levels of cognitive 
activity. This method has distinct advantages in that it 
can directly and continuously measure cognitive activity 
in naturalistic settings. Pinti and colleagues provide an 
overview of the many applications of fNIRS [5]. fNIRS 
has historically been studied in controlled experimental 
designs to measure cognitive response to predetermined 
stimuli [6]. In these designs, subjects undergo exposure 
to a predetermined stimulus that is expected to evoke a 
hemodynamic response such as a pedestrian appearing 
in front of a driver. Pinti, Merla, and Aichelburg recently 
proposed a data-driven method to scan for functional 
events without prior knowledge of the stimuli [7]. This 
approach iteratively fits segments of fNIRS signals to the 
canonical hemodynamic response function (HRF) [8, 9]. 
Statistically significant matches are labeled as responses 
to unknown stimuli. This method could be useful in 
detecting events that increase cognitive load in dynamic 
clinical simulations.

The objective of this study was to explore the acquisi-
tion, cleaning, and interpretation of fNIRS data in simu-
lated clinical scenarios to identify clinical events with 
high cognitive load. Identifying events associated with 
high cognitive load could improve understanding of 
threats to safety in critical situations, such as pediatric 
out-of-hospital cardiac arrests (POHCA).

Methods
We conducted a cross-sectional observational study to 
characterize the cognitive activity of emergency medi-
cal services (EMS) providers during a simulation-based 
activity. Teams of paramedics and emergency medical 
technicians (EMTs) were recruited from local fire depart-
ments to participate in a simulated POHCA scenario. 

EMS teams were recruited in “engine companies” or fixed 
teams who typically work together based on the availabil-
ity on the day of the simulation. Voluntary informed con-
sent for participation, media release, and confidentially 
were obtained from participants. Each team had a person 
in charge (PIC) who were trained paramedics and wore 
the fNIRS device during the scenario. Teams underwent 
an orientation where they were able to familiarize them-
selves with the patient simulator (SimJunior® by Laerdal) 
and the simulated monitor (iSimulate, Albany, NY, USA) 
that were used in the scenario. We also surveyed the par-
amedics for their level of experience.

The simulations were conducted at training centers 
close to the participants. The setup and session facili-
tation were standardized. Each scenario started with 
a patient simulator lying supine on the floor, an iSimu-
late patient monitor nearby, an overhead GoPro, trained 
actor, and room dividers to minimize distractions. The 
actor portrayed a distraught family member perform-
ing CPR on the patient. The actor followed a script tell-
ing responders that the patient has developmental issues 
became unresponsive a few minutes ago. Clinical inves-
tigators stood behind screens to make observations and 
troubleshoot technical difficulties. The participants were 
instructed that no interaction would happen with the 
investigators unless there was a technical failure. For con-
sistency, all scenarios were concluded at 10 min. Teams 
used their own equipment and responded to the simula-
tions as they normally would during patient care.

Scenario
Teams were dispatched to a 6-year-old boy who had 
passed out twice in the past week. The patient pre-
sented as not breathing, unresponsive, and started with 
a shockable rhythm. The teams were expected to perform 
high-quality CPR, defibrillation every 3 min, administer 
epinephrine after the second defibrillation, and prepare 
an antiarrhythmic medication after the third defibrilla-
tion according to pediatric advanced life support (PALS) 
guidelines [10]. The vital signs were programmed to be 
unchanged for the first two defibrillations and become 
normal after the third defibrillation.

FNIRS device and configuration
Optical measurements were captured using a continuous 
wave functional near-infrared spectrometer (OctaMon, 
Artinis Medical Systems, The Netherlands). OctaMon 
is a wireless headband with eight optodes, or bundles of 
optical fiber, light transmitters, and receivers. The trans-
mitters project near-infrared light through cranial tis-
sues at wavelengths of 759 nm and 841 nm. The receivers 
measure how much light is absorbed at a frequency of 
50 Hz. The optical density, or change in absorbed light, 
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was converted to changes in deoxygenated (HbR) and 
oxygenated (HbO) hemoglobin concentration by the 
modified Beer-Lambert law.

Figure  1 illustrates that the optodes were placed in 
a configuration of 3 × 2 long and 1 × 2 short channels 
over the prefrontal cortex (PFC), where channels cor-
respond to a transmitter and receiver pair. The distance 
between transmitters and receivers was 35  mm in long 
channels and 10  mm in short channels. The long chan-
nels recorded neural and nonneural signals, e.g., heart 
rate, respiration, and blood pressure. The short channels 
recorded nonneural signals such that they could be fil-
tered from the long channels [11].

Data processing pipeline
The objective of an fNIRS analysis is to measure task-
evoked hemodynamic responses. We established a data 
processing pipeline, summarized in Fig. 2, to determine 
signal quality, filter nonneural signal, and identify cog-
nitive events. The data processing pipeline was imple-
mented in Python 3.8 and used the Pandas 1.4.2, Numpy 
1.21.5, Scipy 1.7.3, Scikit-learn 1.0.2, and Nilearn 0.7.1 
libraries for numerical processing [12–16]. After process-
ing, two researchers (N. B. and J. I.) mapped functional 
events to videos and coded clinical activities.

Signal quality
We used the signal quality index (SQI) to rate our data 
[17]. The SQI determined if light measured by the device 
fell within acceptable ranges and rated quality based on 
the clarity of the heartbeat in the signal. The SQI was 
applied in 10-s windows to identify low-quality seg-
ments, channels, and samples. We used a wavelet filter 
[18] to correct for motion artifacts in the segments and 
excluded low-quality channels and samples from subse-
quent analysis.

Filtering nonneural signals
After evaluating signal quality, we used recursive least-
squares (RLS) adaptive filter [19] to remove nonneural 
components from the long channels.

In equation e(k) = d(k) – XT(k)W(k) (1), the filtered sig-
nal e(k) is calculated as the difference between the signal 
from the long channel d(k) and the weighted short chan-
nel XT(k)W(k), where k is an index at a given time point 
and X(k) is an nth-order vector X(k) = [x(k) x(k-1) … x(k-
N)]. Weights were applied because light travels a differ-
ent distance in short channels than long channels, and 
this affects its intensity. The weights were updated based 
on a least-squares error criterion and included a forget 
factor, set to 0.9999, which limited influence of informa-
tion from the distant past. The order allowed the filter to 
adapt to nonstationary changes and was set to 16.

Identification of cognitive events
After removing the noise, we applied the Automatic 
IDentification of functional Events (AIDE) algorithm 
[7] as an exploratory method to identify clinical events 
associated with increased cognitive activity. The algo-
rithm tries to fit the HRF [8, 9] for different start times 
and durations. The HRF, shown in Fig. 3, models cogni-
tive activity as an increase in HbO and decrease in HbR, 
followed by a reversion back to baseline. It is a mixture of 
gamma functions with parameters that specify peak delay 
τp, undershoot delay τd, and amplitude ratio A between 
peaks. The parameters for HbO were set to 6, 10, and 6, 
respectively. HbR was set as the inverse of the HbO func-
tion with − 1/3 magnitude.

There is an ongoing debate about analyzing the sig-
nals separately or combined [20]. HbO has greater sig-
nal-to-noise ratio but is more likely to be contaminated 
with physiological noise. A significant change in both 

(1)e(k) = d(k)− XT (k)W (k)

(2)h τp, t =
tτpe−t

τp !
−

tτp+τd e−t

A τp + τd !

Fig. 1 Optode layout of 3 transmitters × 2 receivers for long channels 
and 1 transmitter × 2 receivers for short channels
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signals potentially provides a more reliable but less sensi-
tive indication of a cognitive event [21]. We applied the 
AIDE algorithm to HbO and HbR separately and coded 
events that co-occurred in oxygenated and deoxygenated 
channels.

We used generalized linear modeling (tools) from 
Nilearn [22] to compare the HRF to the signal for differ-
ent times and durations between 10 and 30  s in length. 
For each time point, the duration with the best t-score 
and p-value was retained. We used the peak finding 

Fig. 2 The data processing pipeline

Fig. 3 Canonical hemodynamic response function
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algorithm from SciPy [16] to identify locally maximum 
t-scores that indicated the start of functional events. 
Events that contained other events were excluded to 
favor granularity.

Coding of clinical activities
The functional events were mapped to times in the video 
recordings, as illustrated in Fig.  4. Two researchers (N. 
B. and J. I.) coded clinical tasks that the PIC performed 
when functional events were detected in 2 or more oxy-
genated and deoxygenated channels. The clinical tasks 
included airway procedures, assessment, circulation, 
medication dosing and administration, recalling and fol-
lowing protocol, rhythm checks, setup equipment, defi-
brillating the patient, simulation problems, and unknown 
events. The criteria to code events with 2 or more active 
channels were established to minimize false positives.

Results
We recorded fNIRS signals from 18 simulations at 3 dif-
ferent facilities. There were a total of 122 participants: 18 
PICs, 58 paramedic team members, and 46 EMT team 
members. The PICs led teams with a mean (SD) of 6 (1) 
members. Table  1 describes the level of experience of 
the PICs and paramedic team members. PICs and team 
members reported having similar levels of experience 
and number of pediatric cardiac arrests treated in the 
prior year.

Table  2 describes the events that were detected and 
coded. Defibrillation, medication, and rhythm assess-
ment were the most frequent events and considered 

critical tasks for the POHCA scenario. These events were 
not evenly distributed across all PICs and could depend 
on the area of care they focused on or delegated. For 
example, PICs had more medication events when cal-
culating the dose themselves vs delegating that task to 
another teammate.

Table 3 shows the frequency of events by channel. The 
rhythm and medication events appear to have a strong 
affinity for the left PFC, whereas setup and defibrillation 
have an affinity for the right PFC. Other events did not 
exhibit a consistent response in a given hemisphere.

Discussion
We used a data-driven method to detect cognitive events 
that matched critical steps in POHCA resuscitation dur-
ing dynamic clinical simulations. POHCAs are rare, 
high-mortality events, [23] and children pose known 
challenges to care due to their size and physiology [24]. 
The most frequently detected interventions, [defibril-
lation], [medication] dosing, and [rhythm] checks, 

Fig. 4 Coding analysis, add legend describing B and A type figure

Table 1 PIC characteristics. Data are presented as mean (SD)

PIC characteristics, n = 18
 Years of experience 7.9 (6.7)

 Pediatric cardiac arrests treated in the past year 1.3 (0.5)

 Simulated pediatric cardiac arrests treated in the past year 1.8 (0.6)

Paramedic team member characteristics, n = 58
 Years of experience 11.6 (6.6)

 Pediatric cardiac arrests treated in the past year 1.1 (0.3)

 Simulated pediatric cardiac arrests treated in the past year 1.9 (0.8)
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corresponded to times that demanded the PIC’s attention 
to optimize quality of care. These events also appeared in 
localized regions of the brain, suggesting some functional 
dependency.

Our approach differs from previous fNIRS studies, 
which use a hypothesis-driven methodology to test if 
specific events exceed a predetermined threshold. Li 
et  al. [25] mixed simulated driving with n-back tasks to 
validate that fNIRS is sensitive to workload changes in 
rail transit drivers. Taylor et al. [26] compared healthcare 
employees’ performance of tasks under varying condi-
tions, e.g., performing a handoff in-person or over video. 
They concluded that fNIRS was a useful tool in meas-
uring cognitive load, and that load increased with task 
complexity. This work highlights the potential for fNIRS 
to enhance future simulation research through objective 
determination of which aspects of care are associated 
with higher cognitive load and may be high-yield targets 
for education or systems improvement.

For data cleaning, different methods have been used to 
remove nonneural noise from fNIRS signals. Band-pass 
filters are the most common technique [27] but are only 

partially effective because the frequencies of some physi-
ological signal overlap with the hemodynamic response 
[28]. We used an adaptive filter [19] with short-separa-
tion channels. Short-distance channels are considered 
effective for isolating and removing physiological noise 
[6, 29]. The adaptive aspect of the filter allowed it to com-
pensate for nonstationary nature of the noise, in which 
light could travel different distances based on changes 
in the tissue [30]. We also applied a motion-correction 
wavelet filter [18]. In our initial attempt to code events, 
we observed that many corresponded to pronounced 
physical movements, such as kneeling, standing, and lift-
ing equipment. The wavelet filter was effective to exclude 
these artifacts from analysis.

To detect events, we made adjustments to the AIDE 
algorithm. First, the length of an event was limited to 
10–30  s. The original algorithm allowed events to span 
1–300 s. This led to the detection of many small events 
or a few long events that potentially overlapped. The limit 
was established as a heuristic to focus on a temporal unit 
of analysis that fits the activity. A second adjustment 
was to analyze HbO and HbR separately. The original 

Table 2 Examples and frequency of detected cognitive events

Events Examples Frequency 
of detected 
events

Airway Clear airway, look up equipment size for intubation 9

Assess Collect vital signs, situational information, and history to understand the patient’s underlying prob‑
lems

21

Circulation Supervise chest compressions and swap team members to maintain quality 1

Medication Look up, calculate dose, and administer or monitor administration of drugs 34

Protocol Review or explain steps to provide optimal care 20

Rhythm Pause activity to assess patient vital signs and determine next course of action 29

Setup Unpacking, connecting, and attaching tools for resuscitation 25

Defibrillation Recognize patient’s pulse and apply electrical shock to reset patient’s heart rhythm 34

Grand total 173

Table 3 Frequency of cognitive events by channel and hemisphere

Event Right prefrontal cortex Left prefrontal cortex

HbO 1 HbR 1 HbO 2 HbR 2 HbO 3 HbR 3 HbO 5 HbR 5 HbO 6 HbR 6 HbO 7 HbR 7

Airway 3 4 3 2 3 4 2 1 2 2 4 4

Assess 6 5 5 6 7 7 8 7 5 6 5 4

Circulation 0 0 1 1 1 0 0 0 0 0 0 0

Medication 5 3 8 4 9 7 13 16 16 10 15 16

Protocol 5 3 4 7 6 5 3 7 9 5 7 8

Rhythm 10 9 4 3 7 6 6 8 13 11 9 9

Setup 7 8 10 9 10 12 5 4 4 5 9 8

Defibrillation 13 12 13 15 10 8 12 8 9 6 9 10
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algorithm combined HbO and HbR into one activation 
signal [31]. Prior research has found that the signals have 
different sensitivities to noise, and that detecting concur-
rent events in both would improve specificity at the cost 
of sensitivity. We accepted this trade-off because in this 
dynamic clinical scenario, participants were physically 
active which increased the likelihood of noise. We coded 
events that were detected across multiple channels and 
found that they aligned with our expectations of high-
cognitive load events: [defibrillation], [medication] prep-
aration, and [rhythm] analysis corresponded to essential 
tasks for POHCA care. Medication events, in particular, 
have been well-documented in the literature as associ-
ated with high rates of error based on the need to calcu-
late weight-based dosing [32, 33]. The affinity tasks have 
with left or right PFC also match mental resources that 
would be activated. For example, medication-related 
events were detected more frequently in the left PFC, 
which is associated with semantic and mathematical 
problem-solving [34, 35]. Defibrillation events involve 
monitoring teammates to make sure they are clear of the 
patient before administering an electrical charge. This 
event was detected more frequently in the right PFC, 
which is associated with visual-spatial organization and 
conflict detection [35, 36]. These findings demonstrate 
that fNIRS can detect cognitive events of clinical interest 
and provide insight on the modality of effort.

This work has several limitations. The clinical scenario 
was created and standardized by expert clinicians, but 
did not employ all steps described by INACSL as the 
gold standard for simulation scenario design [37]. Sec-
ond, this was an observational study that was data driven 
and exploratory rather than hypothesis driven, and our 
observed events may contain false positives or false nega-
tives. Finally, while we observed and report on lateraliza-
tion of task-specific cognitive load, we did not account 
for PIC handedness which may relate to functional brain 
mapping [38, 39].

High cognitive load does not necessarily mean that 
performance will be low or errors will occur. For exam-
ple, the Yerkes-Dodson curve [40] suggests that there is 
an optimal load, between disinterest and overburden, at 
which performance is maximized. This could be explored 
by comparing cognitive load to errors in simulation and 
topics discussed in debriefing. These methods and find-
ings could be useful to EMS educators in terms of adjust-
ing the difficulty of training to improve engagement and 
retention of knowledge.

Conclusion
Detected events in fNIRS signals appeared to coincide 
with critical tasks in POHCA simulations and have 
potential for measuring cognitive load in dynamic 

clinical situations. We used the data-driven algorithm, 
AIDE, and detected critical tasks that were performed 
during POHCA care. We also obtained insight on the 
cognitive demands of these tasks, based on the acti-
vated regions of the prefrontal cortex. Future work may 
involve further refining data cleaning and interpreta-
tion through analysis of public data sets and validating 
our findings across a range of clinical scenarios with the 
goal of identifying targets to mitigate the impact of cog-
nitive load on clinical practice during high-stake, low-
frequency events.
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