Study
This was a prospective, randomized, controlled, bicentric study, carried out from May 2013 to October 2013 in the Simulation Laboratory of the Faculty of Medicine of Poitiers and in the Medical Center of Cayenne, French Guyana, after approval by the Institutional Research Board (Scientific Committee of the Faculty of Medicine of Poitiers, file number 11–37). All participants signed an informed consent form. Results were kept anonymous.
Objectives
The primary objective was to evaluate the success rate of surgical insertion of a chest tube in a task trainer simulator of traumatic pneumothorax.
The secondary objectives were (1) to assess the performance of insertion procedure according to a performance assessment scale, (2) to measure the global procedure time and dissection time during insertion, (3) to seek out a correlation between the learner’s status, experience, and performance and success rate, and (4) to survey the learners for their evaluation of the realism of the model, self-confidence, and satisfaction after simulation experience.
Population
Sixty-five healthcare providers (18 residents and 47 senior emergency physicians), representing two groups of registered participants (Poitiers and Cayenne) for the pediatric emergency procedure course at the University of Poitiers (carried out in Poitiers and in Cayenne), were given a chance to participate.
Intervention
Since the surgical approach is rarely taught and practiced in France, all participants received a 1-h academic lesson, prior to the simulation session, on current international recommendations for surgical chest tube insertion for traumatic pneumothorax [1, 21–24]. This didactic lesson was performed by three Advanced Trauma Life Support (ATLS)-certified supervisors. The session consisted in a presentation of the currently recommended safest approach to chest tube insertion in case of traumatic pneumothorax: landmarks on the medio-axillary line, in the fourth or fifth intercostal space [21, 22, 25], use of a tube without chuck or handle, dissection of chest wall muscular layers with a Kelly clamp, followed by insertion of a gloved finger probing into the chest cavity to confirm pleural placement, and strip any adhesions facing the insertion site [21]. In small children, it is recommended to tunnel the chest tube by a skin incision at the underlying intercostal space. This provides a subcutaneous path for securing the tube and avoids its falling out due to a thin chest wall [22].
Comparison
Randomization was based on a list of 65 random numbers—even numbers for SIM+ and odd ones for SIM− group allocation. The SIM+ group participants (n = 34) were assigned for deliberate practice on the simulator just after the didactic lesson, whereas the SIM− group participants (n = 31) were not assigned any simulation practice. The SIM+ group participants had the opportunity to practice several times (mean = four times) on the simulator with immediate feedback from the supervisor. The SIM− group participants were exposed 5 min to the simulator and its environment (webcam, laptop, chest tube equipment) but did not perform chest tube insertions. One month later, all participants (SIM+ and SIM−) were evaluated during an assessment session on the simulator.
Every participant received a questionnaire on clinical experience in chest tube insertion—especially surgical approach—before the didactic lesson and during the month that followed prior to the assessment on the simulator. We arbitrarily distinguished experienced participants who had inserted at least five chest tubes (with a surgical approach) during the last 5 years from novices who had inserted less than five or none during the same span time.
At the end of the study, all participants were offered a chance for deliberate practice on the simulator with supervision.
Outcomes
The scenario consisted in an emergency surgical chest tube insertion for a traumatic pneumothorax in a teenager. The model was the one we had previously developed and published [26]. Briefly, the model assembled a lamb half chest tightly fixed on a box cover (Fig. 1). A spread-out two-layer plastic film simulated the pleural membranes. Inside the box, a webcam connected to a laptop made it possible to assess the intrathoracic steps of the procedure. All the required disposable equipment was set on a table: a 24-Fr-wide Joly drain (diameter 5.4 mm, length 40 cm, with two lateral holes, without chuck or handle) (Fig. 1). The landmark of the fourth rib was indicated to the participant. All simulation sessions were videotaped.
Success was assessed on the laptop connected to the webcam using two criteria: (1) sudden loss of resistance while passing through pleural membranes (one could hear the “pop” of the penetration in the pleural space) and (2) insertion of the chest tube without resistance over at least 10 cm (at or over the third black bar). Assessment of performance was carried out by an independent observer expert in surgical approach for chest tube insertion (ATLS-certified or ATLS instructor), who was neither a supervisor nor a research investigator. He was unaware of the breakdown into two groups. Four observers participated in the assessment (two emergency physicians, one intensivist, and one pediatric intensivist). All were trained for surgical chest tube insertion assessment according to a specific scale that we had previously designed and validated [27]. It included eight steps, detailing the procedure: asepsis, local anesthesia, cutaneous incision and dissection of the thoracic wall, confirmation of insertion, introduction of the chest tube with a Kelly clamp, securing the water seal tubing, securing the chest tube, and location of the incision site (which was examined by the observer after the procedure had been completed). Each item was ranked 1 (correctly performed) or 0 (not done or incorrectly performed). The maximum total score was over 20 points. This scale had acceptable internal coherence (Cronbach’s alpha coefficient = 0.747) and high inter-observer reproducibility (intra-class correlation coefficient = 0.966). Because of the webcam connected to a laptop inside the model, the observer could assess the performance of the extra- and intrathoracic steps of the procedure.
Timing of the different steps of the procedure was recorded. A stopwatch was started at the beginning of the procedure (t0) to record different times: beginning of the cutaneous incision (t1), chest tube passing through the skin (t2), connection of chest tube to water seal tubing (t3), and end of the procedure after securing the chest tube on the skin (t4). Dissection time was consequently defined as t2 − t1.
After each chest tube insertion, a debriefing was performed by the observer, and all the observers were trained in debriefing by good judgment [28]. Videotape replay during debriefing could render participants aware of their gaps in performance [29].
After each assessment, the participant was asked to fill out a questionnaire on realism of the model, self-confidence, and overall satisfaction with simulation-based education using 10-point Likert scales.
Statistics
Analysis was carried out on Biostat TGV software and Excel 2010. Descriptive analysis included percentage, mean, and standard deviation (SD) of every variable. Comparative analysis used paired Student’s t test, with an ANOVA for repeated measures when necessary. Correlation between training and performance or success rate used Spearman’s test. Correlation between success and performance used Pearson’s test. A p value of <0.05 was considered as significant.