de Vries ENE. The incidence and nature of in-hospital adverse events: a systematic review. Qual Saf Health Care. 2008;17(3):216–23. https://doi.org/10.1136/qshc.2007.023622.
Styrelsen for Patientsikkerhed. Årsberetning for Dansk PatientsikkerhedsDatabase 2019. Copenhagen: Styrelsen for Patientsikkerhed; 2020.
Styrelsen for Patientsikkerhed. Strategiplan 2017-2021 København. Denmark: Sundhedsstyrelsen; 2021. [Available from: https://patientsikkerhed.dk/content/uploads/2017/06/strategiplan_2017_korrekturleast.pdf]
Pedersen KZ, Mesman J. A transactional approach to patient safety: understanding safe care as a collaborative accomplishment. J Interprof Care. 2021;35(4):503–13. https://doi.org/10.1080/13561820.2021.1874317. Epub 2021 Mar 2.
Danish Patient Safety Authority. Learning Strategy. In: Danish Patient Safety Authority, editor. Online. 1st Denmark: Danish Patient Safety Authority; 2017.
Reason J. Understanding adverse events: human factors. Qual Health Care. 1995;4(2):80–9.
Institute of Medicine Committee on Quality of Health Care in America. In: Kohn LT, Corrigan JM, Donaldson MS, editors. To err is human: building a safer health system. Washington (DC): National Academies Press (US); 2000.
Garrouste-Orgeas M, Philippart F, Bruel C, Max A, Lau N, Misset B. Overview of medical errors and adverse events. Ann Intensive Care. 2012;2:2.
WHO. Topic 2: What is human factors and why is it important to patient safety? www: WHO; 2021 [Available from: https://www.who.int/news-room/fact-sheets/detail/patient-safety].
Barra FL, Carenzo L, Franc J, Montagnini C, Petrini F, Della Corte F, et al. Anesthesiology resident induction month: a pilot study showing an effective and safe way to train novice residents through simulation. Minerva Anestesiol. 2018;84(12):1377–86.
Rodríguez Y, Hignett S. Integration of human factors/ergonomics in healthcare systems: a giant leap in safety as a key strategy during Covid-19. Hum Fact Ergonomics Manufact Serv Ind. 2021. Epub ahead of print.
Norris EM, Lockey AS. Human factors in resuscitation teaching. Resuscitation. 2012;83(4):423–7.
Hazwani T, Ashraf N, Hasan Z, Antar M, Kazzaz Y, Alali H. 95. Effect of a pediatric mock code on resuscitation skills and team performance: an in situ simulation experience over three years. Eur J Emerg Med. 2020;27(Suppl 1):e15–e16. https://doi.org/10.1097/01.mej.0000697880.10650.f1.
International Ergonomics Association. Human factors and ergonomics online: International Ergonomics Association. Switzerland: International Ergonomics Association; 2021. Available from: https://iea.cc/.
Russ AL, Fairbanks RJ, Karsh B-T, Militello LG, Saleem JJ, Wears RL. The science of human factors: separating fact from fiction. BMJ Qual Saf. 2013;22(10):802–8.
Wolf L, Parker SH, Gleason JL. Human factors in healthcare. In: Patient safety and quality Improvement in Healthcare. Switzerland: Springer; 2021. p. 319–33. https://doi.org/10.1007/978-3-030-55829-1_20.
Styrelsen for Patientsikkerhed. Årsberetning for patientombuddet 2015. In: Patientsikkerhed Sf, www.stps.dk. Kbh. 2016.
Vindrola-Padros C, Andrews L, Dowrick A, Djellouli N, Fillmore H, Gonzalez EB, et al. Perceptions and experiences of healthcare workers during the COVID-19 pandemic in the UK. BMJ Open. 2020;10(11):e040503.
Styrelsen for Patientsikkerhed. Dansk Patientsikkerhedsdatabase Årsberetning 2020. København: Sundhedsministeriet; 2021.
Keddington AS, Moore J. Simulation as a method of competency assessment among health care providers: a systematic review. Nurs Educ Perspect. 2019;40(2):91–4.
Article
PubMed
Google Scholar
Eppich W, Howard V, Vozenilek J, Curran I. Simulation-based team training in healthcare. Simul Healthc. 2011;6(Suppl):S14–9.
Article
PubMed
Google Scholar
Griswold-Theodorson S, Ponnuru S, Dong C, Szyld D, Reed T, McGaghie WC. Beyond the simulation laboratory: a realist synthesis review of clinical outcomes of simulation-based mastery learning. Acad Med. 2015;90(11):1553–60.
Article
PubMed
Google Scholar
Boling B, Hardin-Pierce M. The effect of high-fidelity simulation on knowledge and confidence in critical care training: an integrative review. Nurse Educ Pract. 2016;16(1):287–93.
Article
PubMed
Google Scholar
Lucas AE, Marie. Development of crisis resource management skills: a literature review. Clin Simul Nurs. 2017;13(8):347–58.
Article
Google Scholar
Krautscheid LC. Improving communication among healthcare providers: preparing student nurses for practice. Int J Nurs Educ Scholarsh. 2008;5(1):1–15.
Article
Google Scholar
Gregory A, Hogg G, Ker J. Innovative teaching in situational awareness. Clin Teach. 2015;12(5):331–5.
Article
PubMed
Google Scholar
Andersen SA, Mikkelsen PT, Konge L, Caye-Thomasen P, Sorensen MS. Cognitive load in mastoidectomy skills training: virtual reality simulation and traditional dissection compared. J Surg Educ. 2016;73(1):45–50.
Article
PubMed
Google Scholar
Low XMHD, Brewster DJ. The effects of team-training in intensive care medicine: a narrative review. J Crit Care. 2018;48:283–9.
Lorello GR, Cook DA, Johnson RL, Brydges R. Simulation-based training in anaesthesiology: A systematic review and meta-analysis. Br J Anaesth. 2014;112(2):231–45.
Article
CAS
PubMed
Google Scholar
Gjeraa K, Møller TP, Ostergaard D. Efficacy of simulation-based trauma team training of non-technical skills. A systematic review. Acta Anaesthesiol Scand. 2014;58(7):775–87.
Article
CAS
PubMed
Google Scholar
Lapierre A, Bouferguene S, Gauvin-Lepage J, Lavoie P, Arbour C. Effectiveness of Interprofessional Manikin-Based Simulation Training on Teamwork Among Real Teams During Trauma Resuscitation in Adult Emergency Departments: A Systematic Review. Simul Healthc. 2020;15(6):409–21. https://doi.org/10.1097/SIH.0000000000000443.
Weile J, Nebsbjerg MA, Ovesen SH, Paltved C, Ingeman ML. Simulation-based team training in time-critical clinical presentations in emergency medicine and critical care: a review of the literature. Adv Simul. 2021;6(1):3.
Article
Google Scholar
Buljac-Samardzic M, Doekhie KD, van Wijngaarden JDH. Interventions to improve team effectiveness within health care: a systematic review of the past decade. Hum Resour Health. 2020;18(1):2.
Article
PubMed
PubMed Central
Google Scholar
Henriksen K, Dayton E, Keyes MA, Carayon P, Hughes R. Understanding adverse events: a human factors framework. In: RG H, editor. Patient safety and quality: an evidence-based handbook for nurses. Rockville: Agency for Healthcare Research and Quality (US); 2008.
Shea BJ, Reeves BC, Wells G, Thuku M, Hamel C, Moran J, et al. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ. 2017;358:j4008.
Article
PubMed
PubMed Central
Google Scholar
Page MAO, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71.https://doi.org/10.1136/bmj.n71.
Page MJ, Shamseer L, Tricco AC. Registration of systematic reviews in PROSPERO: 30,000 records and counting. Syst Rev. 2018;7(1):32.
Article
PubMed
PubMed Central
Google Scholar
Booth A. Clear and present questions: formulating questions for evidence based practice. Library Hi Tech. 2006;24(3):355–68.
Article
Google Scholar
Cooke A, Smith D, Booth A. Beyond PICO: the SPIDER tool for qualitative evidence synthesis. Qual Health Res. 2012;22(10):1435–43.
Article
PubMed
Google Scholar
Veritas Health Innovation Ltd. Covidence systematic review software. Melbourne: Veritas Health Innovation; 2021.
Google Scholar
Institute JB. Critical appraisal skills programme. UK: Joanna Briggs Institute; 2021. [Available from: https://casp-uk.net/casp-tools-checklists/].
Hong QN, Fàbregues S, Bartlett G, Boardman F, Cargo M, Dagenais P, et al. The mixed methods appraisal tool (MMAT) version 2018 for information professionals and researchers. Educ Inf. 2018;34:285–91.
Google Scholar
Crombie IK. The pocket guide to critical appraisal: A handbook for health care professionals. London: BMJ Publishing Group; 1997:66.
Stemler S. An overview of content analysis. Practical assessment, research, and evaluation 7.1 (2000):17.
Krippendorff K. Content analysis: an introduction to its methodology. 4th ed. Thousand oaks: SAGE; 2018. 472.
World Medical A. World medical association declaration of helsinki: ethical principles for medical research involving human subjects. JAMA. 2013;310(20):2191–4.
Article
CAS
Google Scholar
Dedy NJ, Bonrath EM, Ahmed N, Grantcharov TP. Structured training to improve nontechnical performance of junior surgical residents in the operating room: a randomized controlled trial. Ann Surg. 2016;263(1):43–9.
Article
PubMed
Google Scholar
Jonsson K, Brulin C, Härgestam M, Lindkvist M, Hultin M. Do team and task performance improve after training situation awareness? A randomized controlled study of interprofessional intensive care teams. Scand J Trauma Resusc Emerg Med. 2021;29(1):73.
Article
PubMed
PubMed Central
Google Scholar
Fernandez R, Rosenman ED, Olenick J, Misisco A, Brolliar SM, Chipman AK, et al. Simulation-based team leadership training improves team leadership during actual trauma resuscitations: a randomized controlled trial. Crit Care Med. 2020;48(1):73–82.
Article
PubMed
Google Scholar
Yule S, Parker S, Wilkinson J, McKinley A, MacDonald J, Neill A, et al. Coaching non-technical skills improves surgical residents’ performance in a simulated operating room. J Surg Educ. 2015;72(6):1124–30 Available from: https://www.cochranelibrary.com/central/doi/10.1002/central/CN-01200595/full.
Article
PubMed
Google Scholar
AbdelFattah KR, Spalding MC, Leshikar D, Gardner AK. Team-based simulations for new surgeons: Does early and often make a difference? Surgery. 2018;163(4):912–5.
Article
PubMed
Google Scholar
Rao R, Dumon KR, Neylan CJ, Morris JB, Riddle EW, Sensenig R, et al. Can simulated team tasks be used to improve nontechnical skills in the operating room? J Surg Educ. 2016;73(6):e42–e7.
Article
PubMed
Google Scholar
Steinemann S, Berg B, Skinner A, Ditulio A, Anzelon K, Terada K, et al. In situ, multidisciplinary, simulation-based teamwork training improves early trauma care. J Surg Educ. 2011;68(6):472–7.
Article
PubMed
Google Scholar
Doumouras AG, Engels PT. Early crisis nontechnical skill teaching in residency leads to long-term skill retention and improved performance during crises: a prospective, nonrandomized controlled study. Surgery. 2017;162(1):174–81.
Article
PubMed
Google Scholar
Pena G, Altree M, Field J, Sainsbury D, Babidge W, Hewett P, et al. Nontechnical skills training for the operating room: a prospective study using simulation and didactic workshop. Surgery. 2015;158(1):300–9.
Article
PubMed
Google Scholar
Auerbach M, Roney L, Aysseh A, Gawel M, Koziel J, Barre K, et al. In situ pediatric trauma simulation: assessing the impact and feasibility of an interdisciplinary pediatric in situ trauma care quality improvement simulation program. Pediatr Emerg Care. 2014;30(12):884–91.
Article
PubMed
Google Scholar
Bearman M, O'Brien R, Anthony A, Civil I, Flanagan B, Jolly B, et al. Learning surgical communication, leadership and teamwork through simulation. J Surg Educ. 2012;69(2):201–7.
Article
PubMed
Google Scholar
Burtscher MJ, Manser T, Kolbe M, Grote G, Grande B, Spahn DR, et al. Adaptation in anaesthesia team coordination in response to a simulated critical event and its relationship to clinical performance. Br J Anaesth. 2011;106(6):801–6.
Article
CAS
PubMed
Google Scholar
Capella J, Smith S, Philp A, Putnam T, Gilbert C, Fry W, et al. Teamwork training improves the clinical care of trauma patients. J Surg Educ. 2010;67(6):439–43.
Article
PubMed
Google Scholar
Emani S, Allan C, Forster T, Fisk A, Lagrasta C, Zheleva B, et al. Simulation training improves team dynamics and performance in a low-resource cardiac intensive care unit. Ann Pediatr Cardiol. 2018;11(2):130–6.
Article
PubMed
PubMed Central
Google Scholar
Gilfoyle E, Koot DA, Annear JC, Bhanji F, Cheng A, Duff JP, et al. Improved clinical performance and teamwork of pediatric interprofessional resuscitation teams with a simulation-based educational intervention. Pediatr Crit Care Med. 2017;18(2):e62–e9.
Article
PubMed
Google Scholar
Miller D, Crandall C, Washington C 3rd, McLaughlin S. Improving teamwork and communication in trauma care through in situ simulations. Acad Emerg Med. 2012;19(5):608–12.
Article
PubMed
Google Scholar
Pascual JL, Holena DN, Vella MA, Palmieri J, Sicoutris C, Selvan B, et al. Short simulation training improves objective skills in established advanced practitioners managing emergencies on the ward and surgical intensive care unit. J Trauma - Injury, Infect Crit Care. 2011;71(2):330–8.
Article
Google Scholar
Paull DE, Deleeuw LD, Wolk S, Paige JT, Neily J, Mills PD. The effect of simulation-based crew resource management training on measurable teamwork and communication among interprofessional teams caring for postoperative patients. J Contin Educ Nurs. 2013;44(11):516–24.
Article
PubMed
Google Scholar
Rice Y, DeLetter M, Fryman L, Parrish E, Velotta C, Talley C. Implementation and Evaluation of a Team Simulation Training Program. J Trauma Nurs. 2016;23(5):298–303.
Article
PubMed
Google Scholar
Roberts NK, Williams RG, Schwind CJ, Sutyak JA, McDowell C, Griffen D, et al. The impact of brief team communication, leadership and team behavior training on ad hoc team performance in trauma care settings. Am J Surg. 2014;207(2):170–8.
Article
PubMed
Google Scholar
Rochlen LR, Malloy KM, Chang H, Kim S, Guichard L, Cassidy R, et al. Pilot one-hour multidisciplinary team training simulation intervention in the operating room improves team nontechnical skills. J Educ Perioper Med. 2019;21(2):E624.
PubMed
PubMed Central
Google Scholar
Ross AJ, Anderson JE, Kodate N, Thomas L, Thompson K, Thomas B, et al. Simulation training for improving the quality of care for older people: an independent evaluation of an innovative programme for inter-professional education. BMJ Qual Saf. 2013;22(6):495–505.
Article
PubMed
Google Scholar
Weller J, Cumin D, Civil I, Torrie J, Garden A, MacCormick A, et al. Improved scores for observed teamwork in the clinical environment following a multidisciplinary operating room simulation intervention. N Z Med J. 2016;129(1439):59–67.
PubMed
Google Scholar
Yee B, Naik VN, Joo HS, Savoldelli GL, Chung DY, Houston PL, et al. Nontechnical skills in anesthesia crisis management with repeated exposure to simulation-based education. Anesthesiology. 2005;103(2):241–8.
Article
PubMed
Google Scholar
Shapiro MJ, Morey JC, Small SD, Langford V, Kaylor CJ, Jagminas L, Suner S, Salisbury ML, Simon R, Jay GD. Simulation based teamwork training for emergency department staff: does it improve clinical team performance when added to an existing didactic teamwork curriculum? Qual Saf Health Care. 2004;13(6):417–21. https://doi.org/10.1136/qhc.13.6.417.
Sawyer T, Laubach VA, Hudak J, Yamamura K, Pocrnich A. Improvements in teamwork during neonatal resuscitation after interprofessional TeamSTEPPS training. Neonatal Netw. 2013;32(1):26–33.
Article
PubMed
Google Scholar
Rosqvist E, Ylönen M, Torkki P, Repo JP, Paloneva J. Costs of hospital trauma team simulation training: a prospective cohort study. BMJ Open. 2021;11(6):e046845.
Article
PubMed
PubMed Central
Google Scholar
Jafri FN, Mirante D, Ellsworth K, Shulman J, Dadario NB, Williams K, Yu S, Thomas J, Kumar A, Edwards RA, Torres RE, Straff DJ. A Microdebriefing Crisis Resource Management Program for Simulated Pediatric Resuscitation in a Community Hospital: A Feasibility Study. Simul Healthc. 2021;16(3):163–9. https://doi.org/10.1097/SIH.0000000000000480.
Fransen AF, van de Ven J, Merien AE, de Wit-Zuurendonk LD, Houterman S, Mol BW, et al. Effect of obstetric team training on team performance and medical technical skills: a randomised controlled trial. Bjog. 2012;119(11):1387–93.
Article
CAS
PubMed
Google Scholar
Rubio-Gurung S, Putet G, Touzet S, Gauthier-Moulinier H, Jordan I, Beissel A, et al. In situ simulation training for neonatal resuscitation: an RCT. Pediatrics. 2014;134(3):e790–e7.
Article
PubMed
Google Scholar
Skelton T, Nshimyumuremyi I, Mukwesi C, Whynot S, Zolpys L, Livingston P. Low-cost simulation to teach anesthetists’ non-technical skills in Rwanda. Anesth Analg. 2016;123(2):474–80.
Article
PubMed
Google Scholar
Mahramus TL, Penoyer DA, Waterval EME, Sole ML, Bowe EM. Two hours of teamwork training improves teamwork in simulated cardiopulmonary arrest events. Clin Nurse Specialist: J Adv Nurs Pract. 2016;30(5):284–91.
Article
Google Scholar
Marko EK, Fausett MB, Deering S, Staat BC, Stormes S, Freund E, et al. Reducing perineal lacerations through team-based simulation. Simul. 2019;14(3):182–7.
Google Scholar
Colman N, Figueroa J, McCracken C, Hebbar K. Simulation-based team training improves team performance among pediatric intensive care unit staff. J Pediat Intensive Care. 2019;8(2):83–91.
Article
Google Scholar
Colman N, Figueroa J, McCracken C, Hebbar KB. Can simulation based-team training impact bedside teamwork in a pediatric intensive care unit? J Pediat Intensive Care. 2019;8(4):195–203.
Article
Google Scholar
Kumar A, Sturrock S, Wallace EM, Nestel D, Lucey D, Stoyles S, Morgan J, Neil P, Schlipalius M, Dekoninck P. Evaluation of learning from Practical Obstetric Multi-Professional Training and its impact on patient outcomes in Australia using Kirkpatrick's framework: a mixed methods study. BMJ Open. 2018;8(2):e017451. https://doi.org/10.1136/bmjopen-2017-017451.
Figueroa MI, Sepanski R, Goldberg SP, Shah S. Improving teamwork, confidence, and collaboration among members of a pediatric cardiovascular intensive care unit multidisciplinary team using simulation-based team training. Pediatr Cardiol. 2013;34(3):612–9.
Article
PubMed
Google Scholar
Gardner R, Walzer TB, Simon R, Raemer DB. Obstetric simulation as a risk control strategy: Course design and evaluation. Simul Healthc. 2008;3(2):119–27.
Article
PubMed
Google Scholar
Blum RH, Raemer DB, Carroll JS, Dufresne RL, Cooper JB. A method for measuring the effectiveness of simulation-based team training for improving communication skills. Anesth Anal. 2005;100(5):1375–80.
Article
Google Scholar
Colacchio K, Johnston L, Zigmont J, Kappus L, Sudikoff SN. An approach to unit-based team training with simulation in a neonatal intensive care unit. J Neonat-Perinat Med. 2012;5(3):213–9.
Article
Google Scholar
George KL, Quatrara B. Interprofessional simulations promote knowledge retention and enhance perceptions of teamwork skills in a surgical-trauma-burn intensive care unit setting. Dimens Crit Care Nurs. 2018;37(3):144–55.
Article
PubMed
Google Scholar
Birch L, Jones N, Doyle PM, Green P, McLaughlin A, Champney C, et al. Obstetric skills drills: evaluation of teaching methods. Nurse Educ Today. 2007;27(8):915–22.
Article
CAS
PubMed
Google Scholar
Chamberland C, Hodgetts HM, Kramer C, Breton E, Chiniara G, Tremblay S. The critical nature of debriefing in high-fidelity simulation-based training for improving team communication in emergency resuscitation. Appl Cogn Psychol. 2018;32(6):727–38.
Article
Google Scholar
Cory MJ, Hebbar KB, Colman N, Pierson A, Clarke SA. Multidisciplinary simulation-based team training: knowledge acquisition and shifting perception. Clin Simul Nurs. 2020;41:14–21.
Article
Google Scholar
De Bernardo G, Sordino D, Cavallin F, Mardegan V, Doglioni N, Tataranno ML, et al. Performances of low level hospital health caregivers after a neonatal resuscitation course. Ital J Pediatr. 2016;42(1):1–7.
Article
Google Scholar
Gum L, Greenhill J, Dix K. Clinical simulation in maternity (CSiM): interprofessional learning through simulation team training. Qual Saf Health Care. 2010;19(5):e19.
PubMed
Google Scholar
Kenaszchuk C, MacMillan K, van Soeren M, Reeves S. Interprofessional simulated learning: short-term associations between simulation and interprofessional collaboration. BMC Med. 2011;9:29. https://doi.org/10.1186/1741-7015-9-29.
Meeker K, Brown SK, Lamping M, Moyer MR, Dienger MJ. A high-fidelity human patient simulation initiative to enhance communication and teamwork among a maternity care team. Nurs Womens Health. 2018;22(6):454–62.
Article
PubMed
Google Scholar
Mehta N, Boynton C, Boss L, Morris H, Tatla T. Multidisciplinary difficult airway simulation training: Two year evaluation and validation of a novel training approach at a District General Hospital based in the UK. Eur Arch Otorhinolaryngol. 2013;270(1):211–7.
Article
PubMed
Google Scholar
Undre S, Koutantji M, Sevdalis N, Gautama S, Selvapatt N, Williams S, et al. Multidisciplinary crisis simulations: the way forward for training surgical teams. World J Surg. 2007;31(9):1843–53.
Article
PubMed
Google Scholar
Wong AH, Gang M, Szyld D, Mahoney H. Making an “attitude adjustment”: using a simulation-enhanced interprofessional education strategy to improve attitudes toward teamwork and communication. Simul. 2016;11(2):117–25.
Google Scholar
Clay-Williams R, McIntosh CA, Kerridge R, Braithwaite J. Classroom and simulation team training: a randomized controlled trial. Int J Qual Health Care. 2013;25(3):314–21. https://doi.org/10.1093/intqhc/mzt027. Epub 2013 Apr 2.
Siassakos D, Draycott T, Montague I, Harris M. Content analysis of team communication in an obstetric emergency scenario. J Obstet Gynaecol. 2009;29(6):499–503.
Article
CAS
PubMed
Google Scholar
Bursiek AA, Hopkins MR, Breitkopf DM, Grubbs PL, Joswiak ME, Klipfel JM, et al. Use of high-fidelity simulation to enhance interdisciplinary collaboration and reduce patient falls. J Patient Saf. 2020;16(3):245–50.
Article
PubMed
Google Scholar
Armstrong P, Peckler B, Pilkinton-Ching J, McQuade D, Rogan A. Effect of simulation training on nurse leadership in a shared leadership model for cardiopulmonary resuscitation in the emergency department. Emerg Med Australas. 2021;33(2):255–61.
Article
PubMed
Google Scholar
Lee MO, Schertzer K, Khanna K, Wang NE, Camargo CAJ, Sebok-Syer SS. Using in situ simulations to improve pediatric patient safety in emergency departments. Acad Med. 2021;96(3):395–8.
Article
PubMed
Google Scholar
Sudikoff SN, Overly FL, Shapiro MJ, Sudikoff SN, Overly FL, Shapiro MJ. High-fidelity medical simulation as a technique to improve pediatric residents’ emergency airway management and teamwork: a pilot study. Pediatr Emerg Care. 2009;25(10):651–6.
Article
PubMed
Google Scholar
Andreatta P, Saxton E, Thompson M, Annich G. Simulation-based mock codes significantly correlate with improved pediatric patient cardiopulmonary arrest survival rates. Pediatr Crit Care Med. 2011;12(1):33–8.
Article
PubMed
Google Scholar
Burke RV, Demeter NE, Goodhue CJ, Roesly H, Rake A, Young LC, et al. Qualitative assessment of simulation-based training for pediatric trauma resuscitation. Surgery. 2017;161(5):1357–66.
Article
PubMed
Google Scholar
Cordero L, Hart BJ, Hardin R, Mahan JD, Giannone PJ, Nankervis CA. Pediatrics residents’ preparedness for neonatal resuscitation assessed using high-fidelity simulation. J Grad Med Educ. 2013;5(3):399–404.
Article
PubMed
PubMed Central
Google Scholar
Palmer E, Labant AL, Edwards TF, Boothby J. A collaborative partnership for improving newborn safety: using simulation for neonatal resuscitation training. J Contin Educ Nurs. 2019;50(7):319–24.
Article
PubMed
Google Scholar
van den Bos-Boon A, Hekman S, Houmes R-J, Vloet L, Gischler S, van der Starre C, et al. Effectiveness of simulation training and assessment of PICU nurses’ resuscitation skills: a mixed methods study from the Netherlands. J Pediatr Nurs. 2021;59:e52–60.
Article
PubMed
Google Scholar
Lemke DS. Rapid Cycle Deliberate Practice for Pediatric Intern Resuscitation Skills. MedEdPORTAL. 2020;16:11020.
Marker S, Mohr M, Østergaard D. Simulation-based training of junior doctors in handling critically ill patients facilitates the transition to clinical practice: an interview study. BMC Med Educ. 2019;19(1):11. https://doi.org/10.1186/s12909-018-1447-0.
Arora S, Hull L, Fitzpatrick M, Sevdalis N, Birnbach DJ. Crisis management on surgical wards: a simulation-based approach to enhancing technical, teamwork, and patient interaction skills. Ann Surg. 2015;261(5):888–93.
Article
PubMed
Google Scholar
Blum RH, Raemer DB, Carroll JS, Sunder N, Felstein DM, Cooper JB. Crisis resource management training for an anaesthesia faculty: a new approach to continuing education. Med Educ. 2004;38(1):45–55.
Article
PubMed
Google Scholar
Calcagno HE, Lucke-Wold B, Noles M, Dillman D, Baskerville M, Spight D, et al. Integrated otolaryngology and anesthesia simulation model for crisis management of cavernous carotid artery injury. Arch Neurol Neuro Disord. 2018;1(1):30–41.
PubMed
PubMed Central
Google Scholar
Frengley RW, Weller JM, Torrie J, Dzendrowskyj P, Yee B, Paul AM, et al. The effect of a simulation-based training intervention on the performance of established critical care unit teams. Crit Care Med. 2011;39(12):2605–11.
Article
PubMed
Google Scholar
Joshi K, Hernandez J, Martinez J, AbdelFattah K, Gardner A. Should they stay or should they go now? Exploring the impact of team familiarity on interprofessional team training outcomes. Am J Surg. 2018;215(2):243–9 Available from: https://www.cochranelibrary.com/central/doi/10.1002/central/CN-01665586/full.
Article
PubMed
Google Scholar
Caskey RC, Owei L, Rao R, Riddle EW, Brooks AD, Dempsey DT, et al. Integration of hands-on team training into existing curriculum improves both technical and nontechnical skills in laparoscopic cholecystectomy. J Surg Educ. 2017;74(6):915–20.
Article
PubMed
Google Scholar
Howard SK, Gaba DM, Fish KJ, Yang G, Sarnquist FH. Anesthesia crisis resource management training: teaching anesthesiologists to handle critical incidents. Aviat Space Environ Med. 1992;63(9):763–70.
CAS
PubMed
Google Scholar
Flin R, Maran N. Identifying and training non-technical skills for teams in acute medicine. Qual Saf Health Care. 2004;13(Suppl 1):i80–4.
Article
PubMed
PubMed Central
Google Scholar
Kirkpatrick D, Kirkpatrick J. Transferring learning to behaviour: using the four levels to improve performance. San Francisco, London: Berrett-Koehler McGraw-Hill distributor; 2005. p. 182. s. p.
Google Scholar
Malec JF, Torsher LC, Dunn WF, Wiegmann DA, Arnold JJ, Brown DA, et al. The mayo high performance teamwork scale: reliability and validity for evaluating key crew resource management skills. Simul Healthc. 2007;2(1):4–10.
Article
PubMed
Google Scholar
Kim J, Neilipovitz D, Cardinal P, Chiu M. A comparison of global rating scale and checklist scores in the validation of an evaluation tool to assess performance in the resuscitation of critically ill patients during simulated emergencies (abbreviated as "CRM simulator study IB"). Simul Healthc. 2009 Spring;4(1):6–16. https://doi.org/10.1097/SIH.0b013e3181880472.
Agency for Healthcare Research and Quality. Publishing and Communications Guidelines Government Printing Office: Agency for Healthcare Research and Quality, Rockville, MD.; 2013 [updated March 2021. Available from: https://www.ahrq.gov/research/publications/pubcomguide/index.html]
Google Scholar
Gordon MJ. A review of the validity and accuracy of self-assessments in health professions training. Acad Med. 1991;66(12):762–9.
Article
CAS
PubMed
Google Scholar
Davis DA, Mazmanian PE, Fordis M, Van Harrison R, Thorpe KE, Perrier L. Accuracy of physician self-assessment compared with observed measures of competence: a systematic review. Jama. 2006;296(9):1094–102.
Article
CAS
PubMed
Google Scholar
Burden AR, Pukenas EW, Deal ER, Coursin DB, Dodson GM, Staman GW, et al. Using simulation education with deliberate practice to teach leadership and resource management skills to senior resident code leaders. J Grad Med Educ. 2014;6(3):463–9.
Article
PubMed
PubMed Central
Google Scholar
Gaba DM. Crisis resource management and teamwork training in anaesthesia. Br J Anaesth. 2010;105(1):3–6.
Article
CAS
PubMed
Google Scholar
Levine JM. Socially-shared cognition and consensus in small groups. Curr Opin Psychol. 2018;23:52–6.
Article
PubMed
Google Scholar
Resnick LB, Levine JM, Behrend S. Socially shared cognition. Washington: American Psychological Association; 1991.
Hutchins E. How a cockpit remembers its speeds. Cognit Sci. 1995;19(3):265–88.
Article
Google Scholar
Salas E, DiazGranados D, Klein C, Burke CS, Stagl KC, Goodwin GF, et al. Does team training improve team performance? A meta-analysis. Hum Factors. 2008;50(6):903–33.
Article
PubMed
Google Scholar
Lebahn-Hadidi M, Abildgren L, Hounsgaard L, Steffensen SV. Integrating cognitive ethnography and phenomenology: rethinking the study of patient safety in healthcare organisations. Phenomenol Cognit Sci. 2021. Online published oct. 19th, 2021.
Marquet K, Claes N, De Troy E, Kox G, Droogmans M, Schrooten W, et al. One fourth of unplanned transfers to a higher level of care are associated with a highly preventable adverse event: a patient record review in six Belgian hospitals. Crit Care Med. 2015;43(5):1053–61.
Article
PubMed
PubMed Central
Google Scholar
Kaboli PJ, Rosenthal GE. Delays in transfer to the ICU: a preventable adverse advent? J Gen Intern Med. 2003;18(2):155–6.
Article
PubMed
PubMed Central
Google Scholar
Kronman MP, Hall M, Slonim AD, Shah SS. Charges and lengths of stay attributable to adverse patient-care events using pediatric-specific quality indicators: a multicenter study of freestanding Children's Hospitals. Pediatrics. 2008;121(6):e1653–e9.
Article
PubMed
Google Scholar
Daouda OS, Hocine MN, Temime L. Determinants of healthcare worker turnover in intensive care units: a micro-macro multilevel analysis. PLoS One. 2021;16(5):e0251779-e.
Fredens K. Læring med kroppen forrest. 1st ed. Kbh: Hans Reitzel; 2018. p. 286.
Google Scholar
Maturana H. Kundskabens træ : den menneskelige erkendelses biologiske rødder. 1st ed. Århus: Ask; 1987. p. 245.
Google Scholar
Ravn I, Maturana H. Kærlighedens biologi: interview med Humberto Maturana. Omverden. 1991;2(7):17–9.
Google Scholar
O’Connor C, Joffe H. Intercoder Reliability in Qualitative Research: Debates and Practical Guidelines. International Journal of Qualitative Methods. 2020. https://doi.org/10.1177/1609406919899220.
McCambridge J, Witton J, Elbourne DR. Systematic review of the Hawthorne effect: new concepts are needed to study research participation effects. J Clin Epidemiol. 2014;67(3):267–77.
Article
PubMed
PubMed Central
Google Scholar
Hollnagel E, Braithwaite J, Wears RL. (Eds.), Resilient health care. Farnham, UK: Ashgate; 2013.