Introduction
Virtual patient simulation (VPS) is an interactive computer simulation that recreates real-world scenarios with the objectives of training, education, and assessment for health care providers [1]. Virtual simulation has been used extensively to adapt nursing education to the COVID-19 pandemic context [2], such as social distancing and/or confinement. The principle of simulation is to allow a better understanding and treatment of common or specific clinical situations that could occur in a real-life context by reproducing them safely and securely [3, 4].
Several comparative studies have shown that distance learning can be utilized as an effective alternative or as a complement to face-to-face training [5] by allowing for knowledge and skills improvement [2, 6]. The results of a study conducted with undergraduate nursing students showed that interactions with virtual patients (VP) can enhance non-technical skills as well [7]. Using VPS, students can make as many mistakes as they can and learn from them [7], which strengthens deep learning, knowledge retention, and learning transfer [8]. During the COVID-19 pandemic, self-esteem, self-confidence, and satisfaction were high among final-year graduate nursing students using virtual simulation [2]. These high levels of satisfaction and self-confidence may be due to the fact that virtual simulation is less stressful because students practice in a safe environment, such as their home, and at their convenience [2, 9]. To make the most of it, simulation-based experience (SBE) must be designed following recognized guidelines [10, 11].
Diabetic ketoacidosis (DKA) is a disorder characterized by uncontrolled metabolic acidosis and excess ketone concentration in the body [12], and it is the most common life-threatening metabolic complication of diabetes especially type I, although it can be present in type II as well [13]. It is worsened by dehydration and acidosis. Considering the severity of DKA and its pattern and frequency of occurrence in patients [14, 15], it is essential that nursing students are versatile with the knowledge of its management in a safe and controlled environment of simulation so as to be able to intervene and manage such cases when in the clinical environment.
This article aims to outline the process of creating a VPS for teaching DKA nursing management using the MedicActiV platform (Bordeaux, France). Several virtual simulations in nursing education have been developed and implemented [16]. However, many gaps remain with regard to the application of instructional design principles, particularly in debriefing practices and the reporting of such practices [16]. In order to address this gap, this article provides step-by-step guidance on the application of the International Nursing Association for Clinical and Simulation Learning (INACSL) Standards of Best Practice for Simulation Design [17, 18, 11, 19].
INACSL standards of best practice for simulation design
The standards committee is one of 11 INACSL committees that oversee the development of the Healthcare Simulation Standards of Best Practice™ (HSSOBPTM), and ensures their quality and upgrade as new evidence and best practices emerge [18]. To provide an effective framework for our virtual patient simulation, we adopted the HSSOBPTM for Simulation Design [11].
In accordance with the HSSOBPTM for Simulation Design [11], 11 criteria were considered in the development of VPS. The following paragraphs show how each criterion was addressed by the VPS developed in this study. It is important to note that the sentences written in italics represent the criteria to be respected as they are formulated in the source article.
Criterion 1: “Simulation-based experiences should be designed in consultation with content experts and simulationists knowledgeable in best practices in simulation education, pedagogy, and practice”. This virtual SBE was created by a student researcher who completed a postgraduate diploma in simulation for health professions education. Moreover, this SBE is a part of a RCT under the supervision of a healthcare simulation expert.
Criterion 2: “Perform a needs assessment”. Several reasons justify the use of DKA nursing management to inform the VPS. Firstly, DKA is one of the most prevalent severe acute complications of diabetes leading to a significant risk of death [20]. The highest rates of DKA are found in low- and middle-income countries, including Morocco [20]. Morocco is one of the 10 countries in the world with the highest estimated incidence and prevalence of type 1 diabetes among children and adolescents aged 0 to 19 years (5.1/1000 and 43.3/1000, respectively) [21]. According to World Health Organization estimates, diabetes kills more than 12,000 Moroccans each year and causes another 32,000 deaths attributed to complications from high blood glucose levels [22]. Secondly, no previous Serious Game (SG) or VPS about this diabetic complication has been developed for healthcare professionals or students in healthcare professions in the French language [23,24,25,26,27,28]. Thirdly, nurses in different specialties will have to manage a case of DKA at some point during their careers [29]. Thus, the population targeted by the VPS would be of greater size.
Criterion 3: “Construct measurable objectives”. A broad goal leads to specific objectives. The general objective of this VPS for nursing students is to learn how to identify and manage DKA. Specific objectives are to
-
Assess the patient's clinical condition.
-
Consider a DKA diagnosis when there is hyperglycemia.
-
Ensure the reception, conditioning, and monitoring of a patient with DKA.
-
Begin the nursing management of DKA.
-
Provide continuous monitoring to the patient.
Criterion 4: “Build the simulation-based experience to align the modality with the objectives”. The simulation modality chosen for this study is a computer-assisted simulation using a VP. To align the modality with the objectives, the VPS phases were designed so that each step requires the student to justify a specific objective. For example, to assess the patient’s clinical condition, the student has to write questions to the VP about his medical history and current symptoms. The conceptual framework chosen to base this SBE is the Jeffries Simulation Framework developed by the National League for Nursing [10, 30]. This SBE includes a starting point, structured learner activities, and an ending point. It begins with a brief briefing on the patient's initial situation. The student then proceeds to the patient interview, the situation pre-analysis, the patient examination, and the final analysis before deciding on a diagnosis. The student then will describe para-clinical examinations and medications and suggest a monitoring strategy and therapeutic education for the patient. The ending point is when scores, duration, and feedback are displayed.
Criterion 5: “Design a scenario or case that provides the context”. A scenario was planned to address the nursing management of DKA. To give a realistic starting point, the backstory of the scenario is about a diabetic 18-year-old single student who suffers from severe stomachache, vomiting, fever, hyperglycemia, bad breath, and missed some insulin injections. Depending on student inquiries, information about the VP’s clinical condition will be provided. Some cues are used to guide the student’s actions such as the weight of the VP who is visibly tired and losing weight (Fig. 1).
Criterion 6: “Use several types of fidelity (physical, conceptual, and psychological)”. A degree of fidelity needs to be established according to several factors. First is the learner’s level; an advanced learner may get irritated by a low level of fidelity, whereas a novice learner may be overwhelmed by a high level of fidelity [11, 31, 32]. Since this VPS targets beginners, a medium level of fidelity was authorized. Other factors such as learning objectives, availability, resources, and equipment were considered [11]. Physical fidelity was addressed by creating a virtual environment that mimics reality. This environment presents a 3D VP sitting on a hospital chair in an emergency room wearing a normal outfit that will be removed during the clinical examination. To enhance fidelity, the VP’s body interacts with the student’s actions. For example, when the undergraduate nursing student touches the VP’s chest, a window automatically opens showing what the student should feel or observe in real conditions (like polypnea or chest tenderness on palpation). Conceptual fidelity makes sure that all the scenario’s or case’s components relate to one another realistically so that the learner may understand the patient as a whole. As recommended in the HSSOBPTM for simulation design [11], the scenario is reviewed by experts in healthcare simulation and endocrinology and tested by registered nurses. Psychological fidelity is less assured in this SBE, using only the patient’s-tired voice, the opportunity to interview him, and to hear his responses. Hospital noise and lighting, distractions, family members, other healthcare team members, time pressure, and competing priorities are other psychological elements that mimic real clinical environments and which are not available on this platform. It is worthy of note that defining the fidelity concept in this VPS was constrained by the INACSL standards. Alternative frameworks such as combining functional task alignment with physical resemblance may provide a broader and more realistic understanding of the concept of fidelity and should therefore be recognized [33].
Criterion 7: “Plan a learner-centered facilitative approach driven by the objectives, learners’ knowledge and level of experience, and the expected outcomes”. When using the virtual simulation, no trained facilitator is required. The facilitation approach is guaranteed by the various multiple-choice questions throughout the VPS and by the automatic dialogue between the student and his VP. It is worthy of note that this automatically generated dialogue takes place after giving the student the chance to ask the required questions to make a preliminary diagnosis and before the clinical examination.
Criterion 8: “Begin simulation-based experiences with prebriefing”. Pre-briefing is a two-step process that includes preparation and briefing [34]. The purpose of prebriefing is to make sure that simulation learners are ready for the educational content and are aware of the ground rules for the SBE. In accordance with the HSSOBPTM for prebriefing [34], the prebriefing activities of this simulation were structured as follows:
-
Send login and password information for access to the virtual simulation to students via email. The students concerned are those who have fulfilled the requirements (attending endocrinology or medical pathology courses);
-
Include in the same email with login information a video recorded by the principal investigator (PI). This video is a step-by-step demonstration of how to use virtual simulation.
-
Also send with the login information email a briefing text. Whose main purpose is to establish the students’ psychological safety and clarify the simulation’s educational content. After explaining the VP’s clinical case, information will be provided about what is expected of the student, his or her role, the duration of the simulation (20 to 30 min), the period of authorized free access (one week 24 h a day), source of technical advice, the fictional contract, and assessment methods. The briefing text is written as follows: “You are a nurse working in an emergency department. A diabetic patient named IDRISSI is admitted to your emergency department. He is suffering from severe abdominal pain. Your role is to identify his severe pain etiology and to set up a nursing plan care adapted to his condition. This virtual simulation will take 20 to 30 min, depending on your performance level. For a week, you have unlimited free access to it from anywhere. If technical support is required, please contact the researcher at her e-mail address. Our goal was to create a simulation that was as realistic as we could manage. We want you to behave as you would in real life. This fictional contract does not prevent you from making mistakes. On the contrary, rather than in real life, this is the moment during which you can err the most. As every training must be evaluated, this virtual simulation will be no exception. A written test is scheduled at the end of this experience to assess your knowledge level and evaluate your perceptions and satisfaction with the experience”.
-
Once connected to the VPS, the first window will contain a shortened version of the briefing text (Fig. 2) which reminds the student of the simulation’s context and their right to make mistakes.
Criterion 9: “Follow simulation-based experiences with a debriefing and/or feedback session”. Following the HSSOBPTM for the debriefing process [35], any of the actions of feedback, debriefing, and/or guided reflection may be included in a debriefing process. Since this SBE is virtual and will be completed on a computer, the debriefing process will be conducted as feedback integrated into the experience as a post-scenario activity. It will address each stage of the virtual simulation, providing the score attained with each question, the correct response, and a brief commentary. However, before they can get feedback, students are notified about their simulation duration and their progress from one simulation to the next.
Criterion 10: “Include an evaluation of the participant(s), facilitator(s), the simulation-based experience, the facility, and the support team”. A randomized controlled trial (RCT) is being conducted on this SBE. It begins with a knowledge pre-test and ends with a knowledge post-test and four validated questionnaires that assess student satisfaction, self-confidence, perceptions, and anxiety. Informed consent will be obtained from all participants. Students will be made aware that this SBE is intended to align with the summative evaluation methods in accordance with the HSSOBPTM for Evaluation of Learning and Performance [36]. Scores on all assessments will be reported to students individually at the end of the study.
Criterion 11: Pilot test simulation-based experiences before full implementation. The produced SBE will be subjected to acceptance testing in two stages: alpha and beta. It will be alpha tested by its developers and a few graduate nurses. Then, it will be beta tested by students who are similar to the RCT population. This pilot test aims to find any SBE elements that are unclear, lacking, or underdeveloped as well as to guarantee the reliability and validity of all the measurement instruments [37,38,39]. Any necessary improvements will be made before the actual implementation of the SBE on the RCT population.