The findings derived from analyzing participant activity demonstrate the multiple ways in which ScBSs can support learning: engagement in clinically relevant activities (i.e., use of tools, social interactions, and structured interventions), sequencing clinically relevant activities and social interactions to make sense of the clinical presentation, and coordination and distribution of the workload. The frequency and regularity analysis shows that these activities were consistent among all participant roles and across all four scenarios. The activity and frequency analysis also suggests that role assignment can influence the complexity of student participants’ experiences. For example, Table 5 demonstrates how student participants assigned the role of primary nurse conducted more complex tasks or had greater levels of responsibility as compared to support nurses.
Importantly, the findings suggest that these scenarios afforded student participants the opportunity to reflexively sequence clinically relevant activities, which includes their practice of aggregating patient data and diagnostic artifacts, to make sense of the patient’s clinical presentation and make decisions related to treatment and care. Students’ activities also included their reflexive interactions with other student participants, standardized patients, and other simulated participants (e.g., charge nurse), further highlighting the complex activity systems created when working with ScBSs. Moreover, when a scenario required more than a single student participant to provide care, they coordinated their activities with each other and distributed the workload to achieve their goals. Thus, in addition to the individual performance of clinically relevant activities, engagement with standardized patients and other simulated participants and peers was an integral component of sense-making efforts during scenario participation.
Implications for instructional design features of scenario-based simulations
These findings are consistent with prior research emphasizing the role that simulations play in affording student participants access to practice diverse, clinically related skills [2, 10]. The findings are also consistent with prior guidance indicating that scenarios support learning to interact with conscious patients and other team members [3, 5]. Importantly, by focusing on participant activity, these findings make explicit some of the major categories of activities student participants may gain access to during ScBS participation, specifically the use of physical tools and artifacts, diverse social interactions, and structured interventions.
The findings from the activity analysis indicate that student participants did not partake in focused repeated practice of a specific clinically relevant activity during a single scenario. However, when considering student participants’ activity across all four scenarios (see Table 5), the data showed that opportunities to repeat practice of some activities were distributed across multiple scenarios (e.g., postpartum or intrapartum assessment, interpretation of vital signs). Thus, these findings extend Issenberg et al.’s and McGaghie et al.’s reviews by shedding light on how educators could operationalize repeated practice opportunities when employing ScBS in their curricula [1, 2].
The frequency and regularity analyses may offer new insights into ways to consider scaffolding student participants’ experiences by thoughtfully considering the complexity of each role portrayed in the scenario. For example, the analysis suggests that student participants assigned to roles with greater levels of responsibility (i.e., primary nurse) conducted more complex care, relied on more subjective artifacts (e.g., palpation of the fundus), and were required to determine when and what support persons were assigned to do. Thus, simulation stakeholders could consider assigning student participants with greater amounts of training or ability to more complex roles. Conversely, less experienced student participants could be considered for support roles that may entail less complexity. This may enable learners of diverse abilities to simultaneously partake in a ScBS.
Considering this scaffolding approach is consistent with Lave and Wenger’s theories regarding legitimate peripheral participation (LPP). LPP indicates that newcomers, such as novice student participants in a scenario, can gain greater experience in a community of practice when they have access to opportunities to engage in simple or lower risk tasks that are nonetheless important to the community’s goals [28]. Furthermore, per Lave and Wenger, participants benefit from both direct participation in a meaningful activity, while also benefiting from modeling provided by their more capable peers [28]. Additionally, scaffolding using such an approach is consistent with recent best practice guidance issued by the NCSBN, which indicate that simulation objectives should be aligned with student participants’ developmental level [29].
Furthermore, the findings are also consistent with prior guidance associated with selecting scenarios to give student participants opportunities to practice diverse communication skills [5], breaking bad news, [30] or supporting clinical situations related to death and dying [31]. Importantly, the activity systems analysis highlights how ScBS affords student participants access to selecting and sequencing social interactions with clinically relevant activities (see, for example, Tables 6 and 7). These findings may provide insight into how partaking in ScBS might support learning clinical reasoning or engage in diagnostic decision-making.
Implications for learning in scenario-based simulations
The findings are also similar to results from Kneebone et al., Lasater, and Mikkelsen et al., who reported that student participants experienced learning during ScBS as occurring through engagement in ScBSs [3, 15, 16]. The descriptive use of AT revealed how student participants transformed objects and how other system components, such as social interactions with peers and standardized patients or accessing and interpreting diagnostic findings, mediated this transformation. Although previous literature has emphasized reflection and debriefing as the primary ways to engage in sense-making associated with ScBS [12,13,14], the findings of this study suggest that sense-making may take place during ScBS participation as well.
By undertaking an in-depth analysis of participant activity, the findings also highlight the complex and emergent properties of these ScBS activity systems. This was exemplified in the activity analysis in which the components (e.g., subject, tools, objects) of the ScBS activity system were not isolated from each other but were dynamic and continuously interacting with each other (see Tables 6 and 7, Fig. 2 for example) [17, 18, 32].
The activity analysis also highlights the nested activities within the ScBS activity system [32]. Barab and colleagues define nested activities as those activities or actions that could be conceived of as separate activity systems. For example, although the faculty-selected goals of these scenarios were explicit, the students often voiced their own goals during the scenario (see, Fig. 2, for example). This nestedness was especially highlighted in the team-based scenario in which each participant’s activities differed, such as one participant’s practice of external uterine massage while another participant prepared medication, yet they all worked towards the common goal of resolving the postpartum hemorrhage. These complex, emergent, and nested properties could have significant implications for formative and summative assessment of student participants.
Lastly, the findings potentially extend our understanding of how scenarios may support learning team-work behaviors when they afford student participants opportunities to coordinate care and distribute the workload with peers and other healthcare professionals, while simultaneously interacting with the material environment (e.g., stethoscope, thermometer, diagnostic findings). These characteristics are consistent with Hutchins’ [33] concept of distributed cognition which suggests that interaction is “deeply multimodal and composed of a complex network of relationships” (p. 376) [33]. Multimodality refers to the different embodied mediums or tools (e.g., physical tools, social interactions) that individuals use to achieve their goals [33]. This complexity and multimodality is reflected in Tables 4, 5, 6, and 7 and in Fig. 2, which highlight the frequency and diversity of activities in which student participants engaged. Thus, ScBS could alternatively be framed as simulated clinical systems in which the unit of analysis would include examination of how student participants coordinate while integrating the use of culturally relevant artifacts to achieve a goal. Viewing scenarios as simulated clinical systems potentially provides simulation stakeholders with alternative ways to examine how student participants collectively achieve goals that go beyond solely relying on verbal reflection or outcomes assessment of performance [34].
Limitations
Although this study provides an in-depth examination of the types of activities student participants engaged in during high-quality ScBS participation, the strategy of rich description required the use of a limited number of video-recorded scenarios. Additionally, these videos depicted senior nursing student participants who could function independently with limited or no support from faculty, thus the analysis may only reveal the types of activities in which more experienced student participants engage. Future research should include analysis of diverse levels of learners (e.g., novice, intermediate) and diverse types of learners (e.g., physicians, respiratory therapists) who partake in SBL activities. Furthermore, the choice to use diverse types of scenarios did not allow for analysis of how consistent the patterns of activity were for a single scenario type (e.g., communication). Future research should take consistency into consideration. Lastly, although this analysis provides a framework that can be used to describe how observing student participants’ activities may support learning, this analysis did not include participants’ reflections on their activity. Future efforts could include the use of stimulated video-recall, which could be used to triangulate student participants’ intended goals.