Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, Das SR, de Ferranti S, Despres JP, Fullerton HJ et al: Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation 2016, 133(4):e38-e360.
Meaney PA, Bobrow BJ, Mancini ME, Christenson J, de Caen AR, Bhanji F, Abella BS, Kleinman ME, Edelson DP, Berg RA, et al. Cardiopulmonary resuscitation quality: improving cardiac resuscitation outcomes both inside and outside the hospital: a consensus statement from the American Heart Association. Circulation. 2013;128(4):417–35.
Article
PubMed
Google Scholar
Idris AH, Guffey D, Pepe PE, Brown SP, Brooks SC, Callaway CW, Christenson J, Davis DP, Daya MR, Gray R, et al. Chest compression rates and survival following out-of-hospital cardiac arrest. Crit Care Med. 2015;43(4):840–8.
Article
PubMed
Google Scholar
Vadeboncoeur T, Stolz U, Panchal A, Silver A, Venuti M, Tobin J, Smith G, Nunez M, Karamooz M, Spaite D, et al. Chest compression depth and survival in out-of-hospital cardiac arrest. Resuscitation. 2014;85(2):182–8.
Article
PubMed
Google Scholar
Berg MD, Nadkarni VM, Zuercher M, Berg RA. In-hospital pediatric cardiac arrest. Pediatr Clin N Am. 2008;55(3):589–604.
Article
Google Scholar
Edelson DP, Abella BS, Kramer-Johansen J, Wik L, Myklebust H, Barry AM, Merchant RM, Hoek TL, Steen PA, Becker LB. Effects of compression depth and pre-shock pauses predict defibrillation failure during cardiac arrest. Resuscitation. 2006;71(2):137–45.
Article
PubMed
Google Scholar
Sutton RM, French B, Niles DE, Donoghue A, Topjian AA, Nishisaki A, Leffelman J, Wolfe H, Berg RA, Nadkarni VM, et al. 2010 American Heart Association recommended compression depths during pediatric in-hospital resuscitations are associated with survival. Resuscitation. 2014;85(9):1179–84.
Article
PubMed
PubMed Central
Google Scholar
Cheng A, Brown LL, Duff JP, Davidson J, Overly F, Tofil NM, Peterson DT, White ML, Bhanji F, Bank I, et al. Improving cardiopulmonary resuscitation with a CPR feedback device and refresher simulations (CPR CARES study): a randomized clinical trial. JAMA Pediatr. 2015;169(2):137–44.
Article
PubMed
Google Scholar
Sutton RM, Niles D, French B, Maltese MR, Leffelman J, Eilevstjonn J, Wolfe H, Nishisaki A, Meaney PA, Berg RA, et al. First quantitative analysis of cardiopulmonary resuscitation quality during in-hospital cardiac arrests of young children. Resuscitation. 2014;85(1):70–4.
Article
PubMed
Google Scholar
Sutton RM, Niles D, Nysaether J, Abella BS, Arbogast KB, Nishisaki A, Maltese MR, Donoghue A, Bishnoi R, Helfaer MA, et al. Quantitative analysis of CPR quality during in-hospital resuscitation of older children and adolescents. Pediatrics. 2009;124(2):494–9.
Article
PubMed
Google Scholar
Sainio M, Hellevuo H, Huhtala H, Hoppu S, Eilevstjonn J, Tenhunen J, Olkkola KT. Effect of mattress and bed frame deflection on real chest compression depth measured with two CPR sensors. Resuscitation. 2014;85(6):840–3.
Article
PubMed
Google Scholar
Noordergraaf GJ, Paulussen IW, Venema A, van Berkom PF, Woerlee PH, Scheffer GJ, Noordergraaf A. The impact of compliant surfaces on in-hospital chest compressions: effects of common mattresses and a backboard. Resuscitation. 2009;80(5):546–52.
Article
PubMed
Google Scholar
Nishisaki A, Nysaether J, Sutton R, Maltese M, Niles D, Donoghue A, Bishnoi R, Helfaer M, Perkins GD, Berg R, et al. Effect of mattress deflection on CPR quality assessment for older children and adolescents. Resuscitation. 2009;80(5):540–5.
Article
PubMed
Google Scholar
Fischer EJ, Mayrand K, Ten Eyck RP. Effect of a backboard on compression depth during cardiac arrest in the ED: a simulation study. Am J Emerg Med. 2016;34(2):274–7.
Article
PubMed
Google Scholar
Niles DE, Maltese MR, Nishisaki A, Seacrist T, Leffelman J, Hutchins L, Schneck N, Sutton RM, Arbogast KB, Berg RA, et al. Forensic analysis of crib mattress properties on pediatric CPR quality—can we balance pressure reduction with CPR effectiveness? Resuscitation. 2013;84(8):1131–6.
Article
PubMed
Google Scholar
Sato H, Komasawa N, Ueki R, Yamamoto N, Fujii A, Nishi S, Kaminoh Y. Backboard insertion in the operating table increases chest compression depth: a manikin study. J Anesth. 2011;25(5):770–2.
Article
PubMed
Google Scholar
Cloete G, Dellimore KH, Scheffer C, Smuts MS, Wallis LA. The impact of backboard size and orientation on sternum-to-spine compression depth and compression stiffness in a manikin study of CPR using two mattress types. Resuscitation. 2011;82(8):1064–70.
Article
CAS
PubMed
Google Scholar
Andersen LO, Isbye DL, Rasmussen LS. Increasing compression depth during manikin CPR using a simple backboard. Acta Anaesthesiol Scand. 2007;51(6):747–50.
Article
CAS
PubMed
Google Scholar
Nishisaki A, Maltese MR, Niles DE, Sutton RM, Urbano J, Berg RA, Nadkarni VM. Backboards are important when chest compressions are provided on a soft mattress. Resuscitation. 2012;83(8):1013–20.
Article
PubMed
PubMed Central
Google Scholar
Oh J, Chee Y, Song Y, Lim T, Kang H, Cho Y. A novel method to decrease mattress compression during CPR using a mattress compression cover and a vacuum pump. Resuscitation. 2013;84(7):987–91.
Article
PubMed
Google Scholar
Milbrath CD, Linroth R, Wilhelmy J, Pate A. A method of comparing effectiveness of mattresses for pressure management for pediatric patients. J Nurs Care Qual. 2014;29(1):66–73.
Article
PubMed
Google Scholar
Yeung J, Meeks R, Edelson D, Gao F, Soar J, Perkins GD. The use of CPR feedback/prompt devices during training and CPR performance: a systematic review. Resuscitation. 2009;80(7):743–51.
Article
PubMed
Google Scholar
Cheng A, et al. Reporting guidelines for health care simulation research: extensions to the CONSORT and STROBE statements. Advances Simulation. 2016;1:25. doi:10.1186/s41077-016-0025-y.
Travers AH, Perkins GD, Berg RA, Castren M, Considine J, Escalante R, Gazmuri RJ, Koster RW, Lim SH, Nation KJ, et al. Part 3: adult basic life support and automated external defibrillation: 2015 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations. Circulation. 2015;132(16 Suppl 1):S51–83.
Article
PubMed
Google Scholar
de Caen AR, Maconochie IK, Aickin R, Atkins DL, Biarent D, Guerguerian AM, Kleinman ME, Kloeck DA, Meaney PA, Nadkarni VM et al: Part 6: pediatric basic life support and pediatric advanced life support: 2015 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations. Circulation 2015, 132(16 Suppl 1):S177-S203.
Meaney PA, Bobrow BJ, Mancini ME, Christenson J, de Caen AR, Bhanji F, Abella BS, Kleinman ME, Edelson DP, Berg RA, et al. Cardiopulmonary resuscitation quality: [corrected] improving cardiac resuscitation outcomes both inside and outside the hospital: a consensus statement from the American Heart Association. Circulation. 2013;128(4):417–35.
Article
PubMed
Google Scholar
Cheng A, Auerbach M, Hunt EA, Chang TP, Pusic M, Nadkarni V, Kessler D. Designing and conducting simulation-based research. Pediatrics. 2014;133(6):1091–101.
Article
PubMed
Google Scholar
Cheng A, Lin Y, Nadkarni V, Wan B, Duff J, Brown L, Bhanji F, Kessler D, Tofil N, Hecker K, et al. The effect of step stool use and provider height on CPR quality during pediatric cardiac arrest: a simulation-based multicentre study. CJEM. 2017:1–9. doi:10.1017/cem.2017.12.
Bates D, Maechler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67(1):1–48.
Article
Google Scholar
Cheng A, Hunt EA, Grant D, Lin Y, Grant V, Duff JP, White ML, Peterson DT, Zhong J, Gottesman R, et al. Variability in quality of chest compressions provided during simulated cardiac arrest across nine pediatric institutions. Resuscitation. 2015;97:13–9.
Article
PubMed
Google Scholar
Hellevuo H, Sainio M, Huhtala H, Olkkola KT, Tenhunen J, Hoppu S. The quality of manual chest compressions during transport—effect of the mattress assessed by dual accelerometers. Acta Anaesthesiol Scand. 2014;58(3):323–8.
Article
CAS
PubMed
Google Scholar
Delvaux AB, Trombley MT, Rivet CJ, Dykla JJ, Jensen D, Smith MR, Gilbert RJ. Design and development of a cardiopulmonary resuscitation mattress. J Intensive Care Med. 2009;24(3):195–9.
Article
PubMed
Google Scholar
Perkins GD, Smith CM, Augre C, Allan M, Rogers H, Stephenson B, Thickett DR. Effects of a backboard, bed height, and operator position on compression depth during simulated resuscitation. Intensive Care Med. 2006;32(10):1632–5.
Article
PubMed
Google Scholar
Oermann MH, Kardong-Edgren SE, Odom-Maryon T. Effects of monthly practice on nursing students’ CPR psychomotor skill performance. Resuscitation. 2011;82(4):447–53.
Article
PubMed
Google Scholar
Sutton RM, Niles D, Meaney PA, Aplenc R, French B, Abella BS, Lengetti EL, Berg RA, Helfaer MA, Nadkarni V. Low-dose, high-frequency CPR training improves skill retention of in-hospital pediatric providers. Pediatrics. 2011;128(1):e145–51.
Article
PubMed
PubMed Central
Google Scholar
Niles D, Sutton RM, Donoghue A, Kalsi MS, Roberts K, Boyle L, Nishisaki A, Arbogast KB, Helfaer M, Nadkarni V. “Rolling refreshers”: a novel approach to maintain CPR psychomotor skill competence. Resuscitation. 2009;80(8):909–12.
Article
PubMed
Google Scholar
Allan KS, Wong N, Aves T, Dorian P. The benefits of a simplified method for CPR training of medical professionals: a randomized controlled study. Resuscitation. 2013;84(8):1119–24.
Article
PubMed
Google Scholar
Mpotos N, Yde L, Calle P, Deschepper E, Valcke M, Peersman W, Herregods L, Monsieurs K. Retraining basic life support skills using video, voice feedback or both: a randomised controlled trial. Resuscitation. 2013;84(1):72–7.
Article
PubMed
Google Scholar