We performed an international Delphi study that led to 13 indicators for moulage authenticity. To our knowledge, this is the first detailed expert identification of indicators of moulage authenticity.
Clear agreement on elements such as colour, likeness to real world was different to size and shape, for example. In these instances of meaning making with “size” and “shape”, the element initially appeared to have no agreement and in later rounds reached agreement. The reason for this is not entirely clear, but could be due to the attrition in the rounds. That is, perhaps the experts who had a view of disagreement dropped out of the study; therefore, the resulting “consensus” may not be representative of the initial group. Another point of view might be that the areas of clear consensus (likeness to real world, colour, etc.) were identified very early on, and perhaps these other elements were areas of “emerging” consensus. That is, now that the clear winners were removed, the grey areas could be adequately considered by the experts. We argue that there is confidence in the answers due to the ranking process implemented in round 2. The top five (via mean ranking) clearly correlate with the items reaching consensus in the latter rounds.
On exploring the importance of the top five elements, we were unsurprised to see “likeness to real world” as the area of priority. The consensus on “appearance”, “feel”, and “anatomical accuracy” are consistent with research on simulator realism [19]. Interestingly, one might argue that likeness to real world is a proxy term for authenticity. If so, the implication is not insignificant. If likeness to real world is rated as the single most important element of moulage, does this then mean that authentic portrayal of moulage is necessary, hands down? Considering Dieckmann’s realism, physical, semantic and phenomenal the element of authenticity directly relates to the physical aspect of realism [7]. However, it stands to reason that there is a direct relationship between authentic physical portrayal and the semantic and phenomenal aspects of realism. A more authentic portrayal of the semantical element might enable an easier leap from “A to B” and a more emotional “buy-in” for the phenomenal realism. Realistic moulage improves immersion (phenomenal realism), but may negatively affect clinical performance; however, in this research there is no measurement of the realistic portrayal of moulage [16]. Moulage rates higher in face validity when applied by a trained make-up artist versus a simulation technician, but did not appear to hinder performance [22]. In our conceptual work, we suggested that perhaps moulage could be a conceptual representation of reality; however, the use of the term likeness to real world and its rating of importance might suggest otherwise [14]. Hamstra et al. argue that simulators should be assessed on how closely they resemble real life (physical resemblance) and how closely the simulator functions like a real human would (functional task alignment) [30]. If applied to moulage authenticity, then the likeness to real-world aspect is relevant to the purpose at hand. For example, if a trauma scenario is presented with the purpose of training undergraduate medical students how to conduct primary and secondary assessments, whilst maintaining situational awareness, we would argue likeness to real world is relevant for the purpose of learning. If moulage is not authentic, the learner might dismiss the relevance or assume it is not important.
Another perspective when considering the authenticity of moulage is the Theory of the Uncanny Valley (Fig. 3), whereby the pursuit of authenticity in robotics and avatars created a sense of fear instead of engagement—it looks familiar, yet it is simultaneously strange [37, 38]. This theory proved that the inconsistency in the realism portrayed caused individuals to have internally conflicted opinions about perceptual persuasiveness. If applied to authentic moulage, perhaps authenticity is relative to the surrounding environment. For example, the moulage might be more “strange” when applied to a mannequin, as compared to a Simulated Patient (a real person trained to portray a particular illness or effect) [39].
A discussion regarding authentic moulage is timely. How would a framework for moulage authenticity apply to our practice? Firstly, we suggest that understanding moulage with a theoretical lens would add weight to the importance of its application in simulation. Sentinel work on simulation foundations either identifies moulage as a side note or does not included it in the discussion of realism at all [8]. Secondly, by using this instrument, simulation might be assessed in more measurable ways, enabling designers to make conclusive decisions about the application of moulage in their simulation design. An extension of this might include its use as a marker of authenticity when using simulation as a form of assessment, potentially improving the validity and transferability of the simulation-based assessment. Additionally, we suggest that the authenticity rating could be applied to the comparison of manikins and their appearance, or in comparison of manikins and simulated patients, further extending our understanding of the use of manikins and simulated patients.
Limitations
The research did not include experts from South America, Africa, or Asia. We are unsure if this was due to the methods employed or the patterns of research in those continents. Purposive sampling was selected as the method due to the increased likelihood that panellists selected possessed the necessary expertise. Perhaps this reflects the level of maturity of simulation in these continents, whereby research centres, journals, and attendance is not as predominant as in western societies. Additionally, it is worth considering the bias that might be inadvertently demonstrated by publishing bodies—it is known that the majority of authors in high-ranking medical education journals, for example, are from 5% of the world [40, 41].
Despite planned administrative processes and clear objectives, the administration of this Delphi was time-consuming [42]. This led to a delay in some of the survey deployments, which may have contributed to the attrition rate. Despite this, the attrition rate is not too dissimilar to other Delphi work—the larger the panel, the greater the attrition [43]. Some of the attrition may be attributed to a lack of interest or expertise (for example, the SPFX artist dropped out after round 1).
Additionally, the lack of information regarding moulage may have contributed to the need for the full five rounds of questioning and the lack of consensus. Perhaps the paucity of research around moulage and the absence of a theoretical framework contribute to the contradictory views and the lack of consensus on some issues. We would argue that, similar to Mullen (2003), a multiple “correct” answers are better than a “unanimously agreed wrong answer” [43].
As for other limitations, we do not present findings of a content validity study in this paper. This work is not included as we felt it would detract from the discussions raised by the experts and falls outside the scope of this study.
Future directions and conclusion
The potential for authenticity and moulage remains largely unexplored. Experts on moulage present thoughtful ideas as to how moulage might contribute to realism in simulation and what authentic moulage might mean in this context. The development of this instrument presents an opportunity to measure the impact of authentic moulage on various aspects in simulation. To verify the instrument’s representativeness, content validity should be assessed by means of an expert survey. Additionally, there is a need to assess the reliability could be verified in a series of trials, whereby moulage elements with a range of authentic and inauthentic features would be rated for authenticity by simulation experts, clinicians, and students. Additionally, the fit of this instrument across other domains, such as augmented, virtual, or mixed realities, could benefit the wider simulation community.
Further areas of exploration might include the comparison of junior versus senior learners, exploring how the approach to simulation context and cues differs. This could be done applying the moulage instrument to create clear distinction between high and low authentic moulage.
This paper presents novel work in the field of both authenticity and moulage. Tensions remain present in regard to the necessity of moulage, how it is applied and the level of authenticity required to be portrayed in a variety of settings. There is a clear imperative to explore authentic moulage further to benefit the simulation community.